On the Amplitude Equations Arising at the Onset of the Oscillatory Instability in Pattern Formation
Título de la tesis:
On the Amplitude Equations Arising at the Onset of the Oscillatory Instability in Pattern Formation
Autor/es:
Vega de Prada, José Manuel
Tipo de documento:
Artículo
Universidad:
E.T.S.I. Aeronáuticos (UPM)
Departamento:
Fundamentos Matemáticos de la Tecnología Aeronáutica
Idioma:
Palabras clave:
pattern formation, oscillatory instability, amplitude equations, Ginzburg-Landau equations
Fecha de la defensa:
Septiembre 1992-01-01
Notas:
Resumen: A well-known system of two amplitude equations is considered that describes the weakly nonlinear evolution of many nonequilibrium systems at the onset of the so-called oscillatory instability. Those equations depend on a small parameter, $varepsilon $, that is a ratio between two distinguished spatial scales. In the limit $varepsilon o 0$, a simpler asymptotic model is obtained that consists of two complex cubic Ginzburg?Landau equations, coupled only by spatially averaged terms....
Valoración: